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Session 1b

An overview and introduction 
to Bayesian statistics

Pete Henrys

What we will cover in this session:

• Some probability basics

• Conditional probability

• Bayes theorem

• Fundamentals of Bayesian inference

• Concept of updating

• Priors

• Why be Bayesian???

Statistics

Statistics can be considered as the science of uncertainty

In every modelling study:

Model parameters, inputs and structure are uncertain

How to deal with uncertainties optimally?

Uncertainties are everywhere: 

Models (environmental inputs, parameters, structure) 

Data (detectability, measurement error)

We need methods that:

• Quantify uncertainties

• Show how to reduce them

• Efficiently transfer information: 

 data → models → model application

Uncertainty Probability

In statistics we quantify uncertainty based on probability theory

• A random event describes an act where the outcome is uncertain 

• A sample space is the set of all possible outcomes 

• Each outcome is assigned a probability between 0 and 1 
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Example

In my sock draw, I have 4 yellow socks, 6 blue socks and 2 black socks. 

Without looking, I pull a sock out of the draw. 

What is the probability that I pull a yellow sock out? 

I then pull another, again without looking, what is the probability that is also yellow? 

Image adapted from © Pixaby CC01

Some basic notation

Write 𝑃 to denote probability

𝑃(𝐸) to denote the probability of an event 𝐸

Sample space is often denoted by Ω , and the sample set {}

 e.g. Ω = {A, B, C}

 

A

B C

Probability Rules

Rule 1

The range of all possible probabilities for an event is bounded by 

0 (impossible) to 1 (definite)

0 ≤ 𝑃(𝐸) ≤ 1

Image © Pixaby CC01

Rule 2: 

The sum of probabilities across all possible events is equal to 1

That is, there is a guarantee that something has to happen by the 

definition of “all possible events”

Probability Rules

Image © Pixaby CC01

Rule 3: 

The complement of any event is equal to 1 minus the probability 

of the event. 

𝑃 𝐸𝑐 = 1 − 𝑃(𝐸)

That is, the probability of an event not happening

Probability Rules

Image © Pixaby CC01

Rule 4: 

Addition Rule 

What is the probability of either event A or event B 

happening?

If two events A and B are independent, then the 

probability of A or B is equal to 𝑃 𝐴 + 𝑃(𝐵)

If the events are not independent, then the probability 

of A or B is equal to the sum of the two minus the 

intersection

Probability Rules

A B

A B
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Example

A large survey of adults finds that: 

• 58% enjoy going for a long (>3mile) 

walk at least once per week

• 35% own a dog

• And 22% both own a dog AND 

enjoy a long walk once a week

What is the probability that a randomly 

selected individual from the population is 

either a dog owner (D) or enjoys a long walk 

once a week (W)

𝑃 𝐷 𝑜𝑟 𝑊 = 𝑃 𝐷 ∪  𝑊

  

  = 𝑃 𝐷 + 𝑃 𝑊  − 𝑃(𝐷 ∩  𝑊)   

Rule 5: 

Multiplication Rule 

Probability Rules

What is the probability of event A AND event B happening?

If two events A and B are independent, then the probability of 

A and B is equal to 𝑃 𝐴  𝑥 𝑃(𝐵)

If the events are not independent, then the probability of A 

and B is equal to the probability of A multiplied by the 

probability of B conditional on A

A B

A B

Image © Pixaby CC01

Example

With a fair coin, what is the probability of tossing 5 

heads in a row? 

𝑃 𝐻 = 0.5

Individual coin flips are independent – the outcome 

of one does not depend on what has happened 

previously.

So, 

𝑃 𝐻𝐻𝐻𝐻𝐻 = 𝑃 𝐻  × 𝑃 𝐻 × 𝑃 𝐻 × 𝑃 𝐻 × 𝑃(𝐻)
= 0.5 × 0.5 × 0.5 × 0.5 × 0.5

= 0.03

Image under free licence from © Adobe Stock

Conditional Probability

A familiar example

P(Covid)

P(Not got Covid)

P(Test positive)

P(Test negative)

P(Test positive)

P(Test negative)

P(Test positive | Covid)

P(Test negative | Covid)

P(Test positive | Not Covid)

P(Test negative | Not Covid)

0.01

0.99

0.993
Please note, this an illustrative example and 
numbers are not to be considered as truth 

0.007

0.69

0.31

Sensitivity

Specificity

Bayes’ Theorem

A B

𝑃(𝐴 𝑎𝑛𝑑 𝐵)

Image © Wikipedia CC 4.o BY-SA
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A familiar example

P(Covid)

P(Not got Covid)

P(Test positive)

P(Test negative)

P(Test positive)

P(Test negative)

P(Test positive | Covid)

P(Test negative | Covid)

P(Test positive | Not Covid)

P(Test negative | Not Covid)

0.01

0.99

0.993
Please note, this an illustrative example and 
numbers are not to be considered as truth 

0.007

0.69

0.31

Sensitivity

Specificity

    P(Covid | Test positive) = P(Test positive | Covid) x P(Covid) / P(Test positive)

    = 0.69 x 0.01 / 0.01383

    = 0.4989

Probability Distributions

A mathematical function to describe the probabilities across the entire event space

Distinguish between discrete and continuous random variables. 

In the discrete case, it is enough to specify a probability mass function

assigning a probability to each possible outcome. 

The probability density function describes the probability of any given value. 

You can compute the probability that the outcome lies in a given interval by 

integrating the probability density function over that interval.

An alternative description is given by the cumulative distribution function 

Common pdfs Beyond Bayes’ Theorem

Bayesian inference uses probability concepts to describe what is 

known about parameters in a given “model”

Contrast that with the frequentist view (using confidence intervals 

and p-vales) which does not tell us about parameters. 

Have you ever had the following output:  

“There is a 95% probability 
that 𝛽 lies in this interval”

In a frequentists world, 

parameters are FIXED. 

Uncertainty is entirely due 

to sampling

So what is a 95% 

confidence interval again? 

Frequentists’ view of uncertainty Likelihood

Given the data we have observed, what is the likely 

value of parameters?

This terminology is important for later, so let’s 

consider an example in detail 

Suppose we count the number of different bird 

species observed in our garden

Question: what is our best guess at the typical 

number of species??? 
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Start with the probability density function (pdf) for the Poisson distribution

𝑃 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
       The likelihood is therefore given by       𝐿 𝜆 =  ς𝑖=1

𝑛 𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!

And the log-likelihood is given by

𝑙 𝜆 = ෍

𝑖=1

𝑛

𝑥𝑖 log 𝜆 − 𝜆 − log 𝑥𝑖!  = log 𝜆 ෍

𝑖=1

𝑛

𝑥𝑖 − 𝑛𝜆 − ෍

𝑖=1

𝑛

log(𝑥𝑖!)

To find the mle we need to maximise this function with respect to 𝜆 (i.e. find the most likely value of 𝜆). To find 

the maximum of a function, we differentiate

𝜕𝑙

𝜕𝜆
=

1

𝜆
෍

𝑖=1

𝑛

𝑥𝑖 − 𝑛 = 0

Rearranging this gives

መ𝜆 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖

i.e., the sample mean.

Bayesian Inference

• For Bayesians parameters are random variables

• Each parameter therefore has a corresponding probability distribution

• Rather than estimating FIXED parameters, in a Bayesian setting 

parameters are random so you predict a distribution of likelihood for the 

true parameter

• Data y are observations from a random process

• Parameters θ are random quantities of that process

• Joint distribution of all these random quantities – P(y, θ)

Bayes rule for probability densities

Note that if prior is uninformative, the posterior returns the likelihood

𝑃 𝜃 𝑦 =
𝑃 𝑦 𝜃 ∙ 𝑃(𝜃)

𝑃(𝑦)
∝ 𝑃(𝑦|𝜃) ∙ 𝑃(𝜃)

What we saw earlier

A Bayesian is one who, vaguely expecting a horse, and catching 

a glimpse of a donkey, strongly believes they have seen a mule.  

X =

Horse Donkey Mule

Images © Pixaby CC01

P(|D) = P() P(D|) / P(D)

Posterior pdf for the 

parameters

Prior pdf for the parameters Likelihood of the data

Scaling constant

( = ∫ P() P(D|) d  )

Bayes’ Theorem

P() = Prior probability 

distribution for the parameters  

of model f. This represents our 

uncertainty about the parameter 

values, before seeing the data.

P(D|) = Probability of getting the 

data D if the true value is f(). 

This probability is a function of the 

parameter values , i.e. the so-

called ‘likelihood-function’.

All unobserved quantities are 

treated the same way:

• Model parameters

• Missing data

• Predictions/forecasts

• Latent states

• Data (before they are 

observed)
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Priors

Isn’t this a huge assumption?  - we make assumptions all the time in science 

and statistics

Priors come from all data and information external to the current study. 

Can be based on expert opinion or data

Capture all known information without constricting                                                          

the posterior

Types of prior

Informative priors – expert opinion; previous studies; intervals; 

expressions of uncertainty

Proper priors (i.e. area under curve integrates to 1)

Vague priors (a.k.a. flat, diffuse; at the beginning of your analysis, plot 

your priors to check they make sense and genuinely are vague)

Shape of prior becomes less influential and likelihood more influential 

with increasing sample size

Conjugacy – allows more straight forward solution

Support – what values are logical given the nature of the data?

So, why all the fuss?

Because we can sample to approximate the posterior distribution rather 

than having to solve mathematically. 

In complex models, we can evaluate the posterior distribution for a 

given set of parameters but can often not solve it. 

So, follow algorithms (MCMC) where we sample the parameter space 

with probabilities proportional to the posterior distribution

Why be a Bayesian?

• Philosophical reasons – viewing parameters as random variables

• Model complexity – unable to use standard approaches

• Combining data from different sources, indirect information (e.g. 

primary data, prior knowledge)

• Data collected at different scales, sampling methods

• Modelling temporal/spatial dependence

• Forecasting, projecting uncertainty

• Identifying thresholds

Intro to Practical Session

What is the proportion of adults who drink at least one cup of tea per day?

We are going to look at a simple Bayesian evaluation using a prior and likelihood 

function to determine this proportion.

We will also see how to update this as new information becomes available.

But first………

© openclipart (CC01 licence) © openclipart (CC01 licence)

Time for a break
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Practical Session

See the practical session link for session 1b

This concludes

An overview and introduction 
to Bayesian statistics

Pete Henrys

Conclusion

What we covered today:

• Some probability basics

• Conditional probability

• Bayes theorem

• Fundamentals of Bayesian inference

• Concept of updating

• Priors

• Why be Bayesian???

What Went Well?

Even Better If!

Your Feedback
Tomorrow (Tuesday)

Start time: 9:30 am

We will cover

2a More basics (Pete H.)

2b Monto Carlo Markov Chains (David)

3a&b Linear modelling (Peter L.)

37 38

39 40

41 42



8

Bayesian methods for 
ecological and 
environmental modelling

Trainers:

Lindsay Flynn Banin, David 

Cameron, Pete Henrys & Peter Levy

© UKCEH 2024

43


	Slide 1: Bayesian methods for ecological and environmental modelling
	Slide 2: Session 1b  An overview and introduction to Bayesian statistics  Pete Henrys
	Slide 3
	Slide 4: Statistics
	Slide 5:  Uncertainty
	Slide 6: Probability
	Slide 7: Example
	Slide 8: Some basic notation
	Slide 9: Probability Rules
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Example
	Slide 14
	Slide 15: Example
	Slide 16: Conditional Probability
	Slide 17: A familiar example
	Slide 18: Bayes’ Theorem
	Slide 19: A familiar example
	Slide 20: Probability Distributions
	Slide 21: Common pdfs
	Slide 22: Beyond Bayes’ Theorem
	Slide 23: Frequentists’ view of uncertainty
	Slide 24: Likelihood
	Slide 25
	Slide 26: Bayesian Inference
	Slide 27: Bayes rule for probability densities
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Priors
	Slide 32: Types of prior
	Slide 33: So, why all the fuss?
	Slide 34: Why be a Bayesian?
	Slide 35: Intro to Practical Session
	Slide 36
	Slide 37: Practical Session
	Slide 38
	Slide 39: This concludes  An overview and introduction to Bayesian statistics  Pete Henrys
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Bayesian methods for ecological and environmental modelling

